博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Luogu[SDOI2008]Sue的小球
阅读量:5238 次
发布时间:2019-06-14

本文共 2216 字,大约阅读时间需要 7 分钟。

题目描述

Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船。然而,Sue的目标并不是当一个海盗,而是要收集空中漂浮的彩蛋,Sue有一个秘密武器,只要她将小船划到一个彩蛋的正下方,然后使用秘密武器便可以在瞬间收集到这个彩蛋。然而,彩蛋有一个魅力值,这个魅力值会随着彩蛋在空中降落的时间而降低,Sue要想得到更多的分数,必须尽量在魅力值高的时候收集这个彩蛋,而如果一个彩蛋掉入海中,它的魅力值将会变成一个负数,但这并不影响Sue的兴趣,因为每一个彩蛋都是不同的,Sue希望收集到所有的彩蛋。

然而Sandy就没有Sue那么浪漫了,Sandy希望得到尽可能多的分数,为了解决这个问题,他先将这个游戏抽象成了如下模型:

以Sue的初始位置所在水平面作为x轴。

一开始空中有N个彩蛋,对于第i个彩蛋,他的初始位置用整数坐标(xi, yi)表示,游戏开始后,它匀速沿y轴负方向下落,速度为vi单位距离/单位时间。Sue的初始位置为(x0, 0),Sue可以沿x轴的正方向或负方向移动,Sue的移动速度是1单位距离/单位时间,使用秘密武器得到一个彩蛋是瞬间的,得分为当前彩蛋的y坐标的千分之一。

现在,Sue和Sandy请你来帮忙,为了满足Sue和Sandy各自的目标,你决定在收集到所有彩蛋的基础上,得到的分数最高。

 

***好了,别看题了,就是“关路灯”。

区间DP

首先,很显然的一点,如果是最优的情况,一定保证摘的是一段连续的彩蛋

那么,我们设f[i][j][k]表示从m开始,向左摘了i个蛋,向右关了j个蛋,k为0或1,分别表示摘掉这段区间的蛋之后在最左端或者在最右端。 那么,状态的转移:
f[i][j][k]=min{f[i-1][j][0/1]+W没摘掉的蛋,f[i][j-1][0/1]+W没摘掉的蛋等}

// luogu-judger-enable-o2

#include<bits/stdc++.h>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=2005;
int n,x0,f[N][N][2],sum[N],tot;
struct egg
{
  int x,y,v;
  bool operator < (const egg &p) const
  {
    return x<p.x;
  }
}e[N];
il int gi()
{
  re int x=0,t=1;
  re char ch=getchar();
  while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
  if(ch=='-') t=-1,ch=getchar();
  while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
  return x*t;
}
il int inn(re int l,re int r)
{
  return sum[r]-sum[l-1];
}
int main()
{
  memset(f,63,sizeof(f));
  n=gi();x0=gi();
  fp(i,1,n) e[i].x=gi();fp(i,1,n) e[i].y=gi(),tot+=e[i].y;fp(i,1,n) e[i].v=gi();
  e[++n]=(egg){x0,0,0};
  sort(e+1,e+1+n);
  fp(i,1,n) sum[i]=sum[i-1]+e[i].v;
  fp(i,1,n) if(e[i].x==x0&&e[i].v==0) f[i][i][0]=f[i][i][1]=0;
  fp(k,1,n-1)
    fp(i,1,n)
    {
      re int j=i+k;
      if(j>n) break;
      f[i][j][0]=min(f[i][j][0],f[i+1][j][0]+(e[i+1].x-e[i].x)*(inn(1,i)+inn(j+1,n)));
      f[i][j][0]=min(f[i][j][0],f[i+1][j][1]+(e[j].x-e[i].x)*(inn(1,i)+inn(j+1,n)));
      f[i][j][1]=min(f[i][j][1],f[i][j-1][1]+(e[j].x-e[j-1].x)*(inn(1,i-1)+inn(j,n)));
      f[i][j][1]=min(f[i][j][1],f[i][j-1][0]+(e[j].x-e[i].x)*(inn(1,i-1)+inn(j,n)));

    //想一想,当前区间可由左边少一个的子区间和右边少一个的子区间得到,而这两种区间都包含人在两端的情况,所以有四种情况

    }
  printf("%.3f\n",(tot-min(f[1][n][0],f[1][n][1]))/1000.0);
  return 0;
}

转载于:https://www.cnblogs.com/yanshannan/p/8463354.html

你可能感兴趣的文章
自定义搜索程序
查看>>
Codeforces.1110E.Magic Stones(思路 差分)
查看>>
【转】Unity3.5 GameCenter基础教程
查看>>
[原]IOS 设备基本信息
查看>>
java 中使用log4j
查看>>
时钟效果
查看>>
C#中使用goto
查看>>
NSData转NSString
查看>>
分享Kali Linux 2016.2第49周虚拟机
查看>>
Xamarin Android项目真机测试闪退
查看>>
(转)C# 泛型详解
查看>>
Excel公式巧用
查看>>
expect实现配置机器信任关系
查看>>
0821: aniy hadoop 1-6的步骤安装总结。。我怕自己忘记
查看>>
常规问题(标签默认边距,文字设置行高)
查看>>
进程与进程描写叙述符(task_struct)
查看>>
Docker镜像制作
查看>>
微信小程序支付功能
查看>>
COGS1752 [BOI2007]摩基亚Mokia(CDQ分治 + 二维前缀和 + 线段树)
查看>>
mysql通过经纬度查询400公里范围内的小区
查看>>